Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8538, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609456

ABSTRACT

Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.


Subject(s)
Anthozoa , DNA Copy Number Variations , Humans , Animals , Genotype , Genomics , Anthozoa/genetics , Engineering
2.
HardwareX ; 14: e00410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36923988

ABSTRACT

The intertidal zone is a harsh environment for marine life as conditions are often both extreme and variable. A wide range of sessile organisms are partially or fully emersed (exposed above the water line) during low tide. In the tropics, when corals are emersed, high light and temperature can be detrimental to their survival. To date, there is no commercially-available logger that can detect periods of emersion, information that is useful for marine research and for coastal resource management. Here, we present a low-cost Arduino-based multi-parameter logger called 'EmerSense' which can detect instances of emersion while simultaneously recording light and temperature profiles. We describe the different steps involved in fabricating EmerSense, including hardware construction and software design, and discuss the results of our field testing at an intertidal coral reef in Singapore.

3.
Mar Environ Res ; 168: 105312, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33848694

ABSTRACT

Stony corals are promising transplant candidates for the ecological engineering of artificial coastal defences such as seawalls as they attract and host numerous other organisms. However, seawalls are exposed to a wide range of environmental stressors associated with periods of emersion during low tide such as desiccation and changes in salinity, temperature, and solar irradiance. All of these variables have known deleterious effects on coral physiology, growth, and fitness. In this study, we performed parallel experiments (in situ and ex situ) to examine among-genotype responses of Pocillopora acuta to emersion by quantifying growth, photophysiological metrics (Fv/Fm, non-photochemical quenching [NPQ], endosymbiont density, and chlorophyll [chl] a concentration) and survival, following different emersion periods. Results showed that coral fragments emersed for longer durations (>2 h) exhibited reduced growth and survival. Endosymbiont density and NPQ, but not Fv/Fm and chl a concentration, varied significantly among genotypes across different durations of emersion. Overall, the ability of P. acuta to tolerate emersion for up to 2 h suggests its potential to serve as a 'starter species' for transplantation efforts on seawalls. Further, careful characterisation and selection of genotypes with a high capacity to withstand emersion can help maximise the efficacy of ecological engineering using coral transplants.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Chlorophyll A , Coral Reefs , Genotype , Salinity , Sunlight
4.
Microorganisms ; 8(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806647

ABSTRACT

The ability of corals to withstand changes in their surroundings is a critical survival mechanism for coping with environmental stress. While many studies have examined responses of the coral holobiont to stressful conditions, its capacity to reverse responses and recover when the stressor is removed is not well-understood. In this study, we investigated among-colony responses of Pocillopora acuta from two sites with differing distance to the mainland (Kusu (closer to the mainland) and Raffles Lighthouse (further from the mainland)) to heat stress through differential expression analysis of target genes and quantification of photophysiological metrics. We then examined how these attributes were regulated after the stressor was removed to assess the recovery potential of P. acuta. The fragments that were subjected to heat stress (2 °C above ambient levels) generally exhibited significant reduction in their endosymbiont densities, but the extent of recovery following stress removal varied depending on natal site and colony. There were minimal changes in chl a concentration and maximum quantum yield (Fv/Fm, the proportion of variable fluorescence (Fv) to maximum fluorescence (Fm)) in heat-stressed corals, suggesting that the algal endosymbionts' Photosystem II was not severely compromised. Significant changes in gene expression levels of selected genes of interest (GOI) were observed following heat exposure and stress removal among sites and colonies, including Actin, calcium/calmodulin-dependent protein kinase type IV (Camk4), kinesin-like protein (KIF9), and small heat shock protein 16.1 (Hsp16.1). The most responsive GOIs were Actin, a major component of the cytoskeleton, and the adaptive immune-related Camk4 which both showed significant reduction following heat exposure and subsequent upregulation during the recovery phase. Our findings clearly demonstrate specific responses of P. acuta in both photophysiological attributes and gene expression levels, suggesting differential capacity of P. acuta corals to tolerate heat stress depending on the colony, so that certain colonies may be more resilient than others.

SELECTION OF CITATIONS
SEARCH DETAIL
...